Dirichlet Process Mixtures of Linear Mixed Regressions
نویسندگان
چکیده
منابع مشابه
Dirichlet Process Mixtures of Generalized Linear Models
We propose Dirichlet Process mixtures of Generalized Linear Models (DP-GLM), a new class of methods for nonparametric regression. Given a data set of input-response pairs, the DP-GLM produces a global model of the joint distribution through a mixture of local generalized linear models. DP-GLMs allow both continuous and categorical inputs, and can model the same class of responses that can be mo...
متن کاملClustering in linear mixed models with approximate Dirichlet process mixtures using EM algorithm
In linear mixed models, the assumption of normally distributed random effects is often inappropriate and unnecessarily restrictive. The proposed approximate Dirichlet process mixture assumes a hierarchical Gaussian mixture that is based on the truncated version of the stick breaking presentation of the Dirichlet process. In addition to the weakening of distributional assumptions, the specificat...
متن کاملClustering in linear mixed models with Dirichlet process mixtures using EM algorithm
SUMMARY: In linear mixed models the assumption of normally distributed random effects is often inappropriate and unnecessary restrictive. The proposed Dirichlet process mixture assumes a hierarchical Gaussian mixture. In addition to the weakening of distributions assumptions the specification allows to estimate clusters of observations with a similar random effects structure identified. An Expe...
متن کاملAccelerated Variational Dirichlet Process Mixtures
Dirichlet Process (DP) mixture models are promising candidates for clustering applications where the number of clusters is unknown a priori. Due to computational considerations these models are unfortunately unsuitable for large scale data-mining applications. We propose a class of deterministic accelerated DP mixture models that can routinely handle millions of data-cases. The speedup is achie...
متن کاملDirichlet Process Mixtures of Generalized Mallows Models
We present a Dirichlet process mixture model over discrete incomplete rankings and study two Gibbs sampling inference techniques for estimating posterior clusterings. The first approach uses a slice sampling subcomponent for estimating cluster parameters. The second approach marginalizes out several cluster parameters by taking advantage of approximations to the conditional posteriors. We empir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications for Statistical Applications and Methods
سال: 2015
ISSN: 2383-4757
DOI: 10.5351/csam.2015.22.6.625